Hyperbolic Hopf Fibrations The Hopf Fibration of S^3 is amazing and beautiful. Rather than describe it here, I'll point you to a lovely online reference with pictures and videos by Niles Johnson. nilesjohnson.net/hopf.html To understand it better (and fibrations in general), I recommend this talk by Niles too. www.youtube.com/watch?v=QXDQsmL-8Us It turns out there is an analogue of the Hopf fibration for H^3. In fact, there is not just one "fiberwise homogenous" fibration in the hyperbolic case. There is a 2-parameter family of them, plus one additional fibration that does not fit the family. As with S^3, fibers in the H^3 cases are geodesics. They are ultraparallel in fibrations from the family, and parallel in the exceptional fibration. I found the following dissertation by Haggai Nuchi a good intro and resource to help think about all this. www.math.upenn.edu/grad/dissertations/NuchiThesis.pdf I'm posting three early pictures of H^3 fibrations belo...
A more accurate rendering of the {6,3,3}. This shows the geodesic edges more properly, as arcs orthogonal to the "plane at infinity" of hyperbolic space (vs. straight lines).
76 Unique Honeycombs Last weekend, Tom Ruen and I hit the milestone of uploading to wikipedia at least one image for 9 families of compact, Wythoffian, uniform H3 honeycombs, a total of 76 unique honeycombs. http://en.wikipedia.org/wiki/Uniform_honeycombs_in_hyperbolic_space You can easily browse all the images on my wiki user page: http://commons.wikimedia.org/wiki/User:Roice3 - Compact means the cells are finite in extent. - Wythoffian means we can generate them using a kaleidoscopic construction, that is by reflecting in mirrors. - Uniform means they are vertex transitive and have uniform polyhedral cells. There may even be more honeycombs that meet all these criteria, I don't know. ( update: see Tom's comment below! ) I do know there are hundreds more which don't meet one or more of these criteria, many undiscovered. In fact, there are infinitely more because there are some infinite families of honeycombs. wendy krieger continues to discover and enumerate more...
Comments
Post a Comment